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Equilibration of weakly nonlinear salt fingers
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An analytical model is developed to explain the equilibration mechanism of the salt
finger instability in unbounded temperature and salinity gradients. The theory is based
on the weakly nonlinear asymptotic expansion about the point of marginal instability.
The proposed solutions attribute equilibration of salt fingers to a combination of
two processes: (i) the triad interaction and (ii) spontaneous development of the
mean vertical shear. The non-resonant triad interactions control the equilibration of
linear growth for moderate and large values of Prandtl number (Pr) and for slightly
unstable parameters. For small Pr and/or rigorous instabilities, the mean shear effects
become essential. It is shown that, individually, neither the mean field nor the triad
interaction models can accurately describe the equilibrium patterns of salt fingers
in all regions of the parameter space. Therefore, we propose a new hybrid model,
which represents both stabilizing effects in a single framework. The resulting solutions
agree with the fully nonlinear numerical simulations over a wide range of governing
parameters.

1. Introduction
Double diffusion is the instability of a stratified fluid at rest whose density is

determined by two components diffusing at different rates. Stern (1960) demonstrated
that such a configuration can be unstable even if the density of the fluid is increasing
downwards. The resulting double-diffusive convection has long been recognized as
a significant, and in many cases dominant, mixing process in the ocean. In the
subtropical oceans, hot salty water is often located above cold and fresh. Thus,
the faster diffuser (temperature T ) is stabilizing and the slower diffuser (salinity
S) is destabilizing, resulting in the salt finger form of double-diffusive convection,
which is the main focus of our discussion. In addition to oceanographic applications,
the compositionally driven double-diffusive convection affects the heat and material
transport in a variety of other geo- and astrophysical fluid systems, from magmatic
melts (Tait & Jaupart 1989) to the interiors of giant planets and stars (Guillot 1999;
Vauclair 2004; Charbonnel & Zahn, 2007; Stancliffe et al. 2007).

A fundamental problem of the double-diffusive convection theory, in all its forms
and applications, concerns the equilibration of primary instability and the onset of
statistically steady convection. According to linear instability theory (Stern 1960;
Schmitt 1979), the fastest growing salt fingers appear in the form of narrow vertical
streams – the elevator modes. These vertical modes, in turn, also become unstable
(Holyer 1984). Laboratory (e.g. Krishnamurti 2003) and modelling studies (Stern &
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Simeonov 2005) suggest that the secondary instabilities of the elevator mode ultimately
arrest its growth and thereby control the characteristics of the equilibrium state.
However, the mechanism of interaction between primary and secondary instabilities
is still unclear, and the explicit prediction of the equilibrium amplitude of salt fingers
as a function of the background parameters is lacking.

This study systematically explores a broad region of the parameter space, which
includes both the oceanographically relevant moderate values of the Prandtl number
(Pr) as well as low Pr realized in the interior of stars and giant planets (Schmitt 1983;
Merryfield 1995). While the difference in parameters relevant for geophysical and
astrophysical applications is substantial – ultimately resulting in different equilibrium
dynamics – it is of interest to discuss both systems in terms of a unified theory.
We attempt to explain the equilibrium patterns and magnitudes of salt fingers
by developing a weakly nonlinear asymptotic expansion pivoted about the point
of marginal instability. The proposed solutions attribute the equilibration to a
combination of two stabilizing effects: (i) the triad or mode–mode interaction and (ii)
the adverse action of vertical shear, spontaneously developing as a result of secondary
salt finger instabilities. The relative importance of the triad and mean field effects
varies with governing parameters. Triad interactions control the equilibration of the
linear growth for moderate and large values of Prandtl number and for the marginal
instability, whereas the mean field effects become essential for small Pr and/or in the
strongly nonlinear regime.

This study indicates that the asymptotic nonlinear models based entirely on the
triad or entirely on the mean field equilibration mechanisms have only limited success
in reproducing the numerical results. However, a more general expansion, which
takes into account both effects, agrees well with the corresponding fully nonlinear
simulations over a wide range of governing parameters. We predict that the vertical
heat-salt fluxes rapidly decrease with the density ratio Rρ = αT̄z/βS̄z and have a
complicated non-monotonic dependence on the Prandtl number Pr = ν/kT . In this
paper, (T̄z, S̄z) denote the background gradients of temperature and salinity, (α, β) are
the expansion/contraction coefficients, (kT , kS) are the molecular diffusivities of heat
and salt and ν is the viscosity.

Before presenting details of the proposed theory, it should be emphasized that our
model describes only the local effects that are controlled by the local T-S gradients;
we are concerned here with spatial scales comparable to the characteristic salt finger
width. As argued in Stern, Radko & Simeonov (2001), solutions for individual fingers
are essential in formulating the ‘small domain’ flux-gradient laws and inclusion
of much greater scales in the model may reveal their secondary instabilities. The
large-scale instabilities, in turn, can modify the uniform background stratification
(Merryfield 2000; Radko 2003, 2005), spontaneously generating stepped structures
known as thermohaline staircases. These effects, however, are beyond the scope of
our paper.

The proposed theory should also be clearly distinguished from the earlier studies
(Veronis 1965; Proctor & Holyer 1986; Radko & Stern 2000; Balmforth et al. 2006)
of a model in which the finger layer is vertically bounded by rigid surfaces – a set-up
similar to the classical Rayleigh convection problem. These rigid boundary conditions
filter out the fastest growing elevator mode, leading to fundamental differences
between bounded and unbounded dynamics. While the bounded configuration could
be relevant for some lab experiments (see the discussion in Radko & Stern 2000), the
unbounded model is more representative of typical oceanic and astrophysical systems
where the scale of fingering zones greatly exceeds the scale of individual fingers.
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Dynamical peculiarities caused by the unbounded character of the system render
some standard methods of the nonlinear stability analysis inapplicable for our
problem, motivating the development of new techniques. For instance, in the thermal
convection theory (Malkus & Veronis 1958), the asymptotic expansion opens with
the fastest growing normal mode. The nonlinear interaction modifies the mean (hori-
zontally averaged) temperature distribution and ultimately leads to the equilibration
of linear growth. Analogous models have been developed for a great variety of the
stability problems (reviewed by Drazin & Reid 1981, among others). Unfortunately,
this direct approach cannot be applied to the unbounded salt finger model, where the
fastest growing elevator mode represents an exact solution of the nonlinear governing
equations. As a result, even in the weakly nonlinear limit, our system does not reduce
to a single-model amplitude equation of Landau type (Landau 1944). Instead, it retains
the form of full partial differential equations. However, these asymptotic equations are
considerably simpler and more transparent than the original set. The weakly nonlinear
models analytically represent the dependence of all quantities on the background
density ratio – one of the central problems in the double-diffusive convection theory.

The paper is set up as follows. In § 2 we present preliminary two-dimensional
numerical experiments focusing our inquiry on the equilibrium patterns of fully
developed fingering convection and their dependence on the Prandtl number. In
§ 3, we formulate two weakly nonlinear models that isolate specific mechanisms of
equilibration – the triad interaction and the mean field mechanisms – and discuss
their limitations. The equilibrium structure of the simulated salt fingers is explained
by a hybrid model, which includes both stabilizing effects in a single framework (§ 4).
Section 5 summarizes the results and conclusions.

2. Numerical simulations
Following Radko & Stern (1999), we separate the temperature and salinity fields

into the basic state (T̄ , S̄), representing a uniform vertical gradient, and a departure
(T , S) from it. The two-dimensional Boussinesq equations of motion are expressed in
terms of T , S and non-dimensionalized using l = (kT ν/gαT̄z)

1/4, kT / l and l2/kT as the
scales of length, velocity and time respectively. The expansion/contraction coefficients
are incorporated in (T , S), and αT̄zl is used as the scale for both temperature and
salinity perturbations, resulting in⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
+ J (ψ, T ) +

∂ψ

∂x
= ∇2T ,

∂S

∂t
+ J (ψ, S) +

1

Rρ

∂ψ

∂x
= τ∇2S,

∂

∂t
∇2ψ + J (ψ, ∇2ψ) = Pr

[
∂

∂x
(T − S) + ∇4ψ

]
,

(1)

where ψ is the streamfunction and J (a, b) = (∂a/∂x)(∂b/∂z) − (∂a/∂z)(∂b/∂x) is the
Jacobian. This system is unstable with respect to the salt fingering (Stern 1960) for

1 < Rρ < 1/τ. (2)

The key non-dimensional numbers governing the evolution of system (1) are the
Prandtl number Pr = ν/kT , the diffusivity ratio τ = kS/kT and the background density
ratio Rρ =αT̄z/βS̄z. We also assume that, in the absence of large-scale structures,
fluxes are independent of the non-dimensional parameters related to the domain
size (e.g. the Rayleigh number). The local flux-gradient laws are commonly used to
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Figure 1. Instantaneous temperature T (a) and streamfunction ψ (b) for the numerical
experiment with Pr = 10, τ = 1/3. Red colour corresponds to high values; low values are
shown in blue for both T and ψ .

parameterize the effects of salt fingering on the oceanic circulation and successful
attempts have been made to validate the concept of an ‘unbounded T-S gradient’ in
numerical simulations (Radko & Stern 1999).

To gain a preliminary understanding of the unbounded salt finger system and its
dependence on (Rρ, τ, P r), the equations in (1) were solved numerically. We assume
periodic boundary conditions for T, S and ψ in x and z and integrate the governing
equations using a dealiazed pseudospectral method described in Stern & Radko
(1998). In the following calculation, we use a diffusivity ratio of τ = 1/3 which is
higher than the heat/salt value (τ = 1/100). This choice is dictated by considerations
of convenience – otherwise it becomes necessary to resolve small scales set by the
dissipation of salt in simulations and introduce two distinct dissipative scales in
analytical models. As discussed in Stern et al. (2001) and Radko (2008), the use of
a moderate diffusivity ratio is not expected to alter the fundamental physics and
characteristics of salt fingering, as long as τ remains significantly less than unity.

Our first example (figure 1) is an experiment performed with the overall density ratio
of Rρ = 2.8 and the Prandtl number Pr = 10. The size of the square computational
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Figure 2. Same as in figure 1 but for Pr = 0.01. Note the appearance of the horizontally
uniform bands in (b) representing the sheared horizontal flow.

domain (Lx =Lz) is equivalent to 16 linearly fastest growing finger wavelengths (d).
The flow was resolved by a uniform mesh with (Nx × Nz) = (128 × 128) elements,
and the model was initialized from rest by a small-amplitude random computer-
generated initial (T, S) distribution. After a few characteristic growth periods, active
statistically steady double-diffusive convection was established. Figure 1(a) shows a
typical instantaneous temperature field, which exhibits the characteristic signatures
(e.g. Stern et al. 2001) of the fully developed fingering convection. Salt fingers are
vertically elongated, irregular, and not visibly affected by the large-scale circulation
patterns. Figure 1(b) presents the corresponding streamfunction, also dominated by
the small-scale features whose scale is comparable to the salt finger width.

Figure 2 presents an analogous experiment performed with a much smaller Prandtl
number Pr = 0.01; all other parameters are the same as in figure 1. The change
in Prandtl number results in a dramatic alteration of the flow pattern. While
the temperature field (figure 2a) is still dominated by small-scale features, salt
fingers become more isotropic and irregular. The streamfunction field (figure 2b)
reorganizes into the horizontally uniform bands representing sheared horizontal flow.
The spontaneous development of the mean shear is a striking and persistent outcome
of all experiments performed with low Pr. We note, in passing, that spontaneous
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shear generation has also been observed in regular thermal convection experiments
at large Rayleigh numbers (Krishnamurti & Howard 1981) and rationalized using of
a low-order mathematical model (Howard & Krishnamurti 1986).

The difference in the equilibrium dynamics of salt fingers at high and low Prandtl
numbers, illustrated in figures 1 and 2, requires an explanation. Guided by the classical
treatments of the convection problems (e.g. Malkus & Veronis 1958), we explore the
equilibration mechanisms by focusing on the marginally unstable regime.

3. Weakly nonlinear expansions: triad interaction and the mean field theory
To rationalize the key characteristics of the foregoing solutions (§ 2), we develop

a weakly nonlinear theory based on an asymptotic expansion about the point of
marginal instability for salt fingering Rρ → τ−1. We introduce a small parameter
ε =1/Rρ − τ and search for a solution of the governing equations by expanding
(T , S, ψ) in powers of ε. The governing equations are still given by (1), although the
salinity equation is cast in a slightly modified form:

∂S

∂t
+ J (ψ, S) + (τ + ε)

∂ψ

∂x
= τ∇2S. (3)

The space/time scales in this limit are determined on the basis of linear theory
reviewed in Appendix A:

(x, z) = ε−1/4(x0, z0), t = ε−3/2t0. (4)

Next, we suppose that the leading order scale of the temperature is T ∼ εq , where
the exponent q is yet to be determined. The assumed balance of linear terms in the
advection–diffusion equations (1) suggests scaling of the streamfunction as ψ ∼ ε1/4T

and the salinity as S ∼ T . Thus,⎧⎨
⎩

T = εqT0 + . . . ,

S = εqS0 + . . . ,

ψ = εq+1/4ψ0 + . . . .

(5)

The value of q is ultimately controlled by the physics of equilibration. We now
examine the two most common stabilizing processes – the triad and mean field
interaction models.

3.1. Triad interaction

The triad models assume that the linear growth of each mode is countered by the
nonlinear interaction of two other growing modes. Complex fluid dynamical systems,
exemplified by fully developed fingering convection (see figures 1 and 2), necessarily
involve a multitude of such interactions. The following asymptotic theory attempts
to formalize the description of one-stage nonlinear interactions and their cumulative
role in the selection of equilibrium patterns. This analytical development follows that
in Radko and Stern (1999), who presented the weakly nonlinear three-dimensional
model in the limit of infinite Prandtl number.

If it is the leading order nonlinearity that equilibrates the linear growth of unstable
modes, then the terms ∂T /∂t and J (ψ, T ) in temperature equation (1) are of the same
order, which, in view of (4) and (5), requires that

q =
3

4
. (6)
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The nonlinear interaction of the zero-order terms (5) also results in the generation
of new (first-order) terms in the ε-expansion of (T , S, ψ). Their scale is deduced from
the balance between the linear operator in the T-S equations acting on the first-order
terms and the leading order nonlinearity:⎧⎨

⎩
T = ε3/4T0 + ε7/4T1 + . . . ,

S = ε3/4S0 + ε7/4S1 + . . . ,

ψ = εψ0 + ε2ψ1 + . . ..

(7)

Next, the asymptotic series (7) are substituted in the governing equations (1) and
the terms of the same order in ε are collected. The leading order (∼ε5/4) balance
of the T-S equations yields the following diagnostic relationships between zero-order
variables: ⎧⎨

⎩
T0 = S0,

∂ψ0

∂x0

= ∇2
0T0,

(8)

where ∇2
0 ≡ (∂2/∂x2

0 )+ (∂2/∂z2
0). At the next order (∼ε9/4), the T-S equations yield the

following prognostic relationships:⎧⎪⎪⎨
⎪⎪⎩

∂T0

∂t0
+ J0(ψ0, T0) +

∂ψ1

∂x0

= ∇2
0T1,

∂T0

∂t0
+ J0(ψ0, T0) +

∂ψ0

∂x0

+ τ
∂ψ1

∂x0

= τ∇2
0S1,

(9)

where J0(a, b) = (∂a/∂x0)(∂b/∂z0) − (∂a/∂z0)(∂b/∂x0). Note that we have also used
T0 = S0 from (8). The leading order (∼ε2) balance of the vorticity equation is given by

∂

∂x0

(T1 − S1) + ∇4
0ψ0 = 0. (10)

Next, the salinity equation in (9) is divided by τ and subtracted from the temperature
equation, and then (T1 − S1) is eliminated using (10):(

1

τ
− 1

)
∂

∂x0

[
∂T0

∂t0
+ J0(ψ0, T0)

]
+

1

τ

∂2ψ0

∂x2
0

= ∇6
0ψ0. (11)

Combining (11) with (8), we arrive at a closed system of equations for zero-
order variables. This system contains no reference to ε or Rρ , which means that the
dependence of primary variables (T , S, ψ) on the density ratio is represented only by
the rescaling factors in (5).

In order to determine whether (8) and (11) capture gross features of the original
system (1), the asymptotic model was numerically integrated in time. To be consistent
with earlier simulations (figures 1 and 2), the computational domain resolved 16 fastest
growing finger wavelengths, the numerical grid consisted of (128 × 128) elements, the
diffusivity ratio was τ = 1/3, and the model was initialized from rest by a random
computer-generated initial T0 distribution. After a few characteristic growth periods,
active statistically steady double-diffusive convection was established. The transition
to the statistically steady regime is demonstrated by presenting (figure 3a) the time
evolution of the rescaled temperature flux FT 0 = 〈w0T0〉, where 〈...〉 denotes a spatial
average. The flux equilibrated at

|FT 0| ≈ 27.76. (12)
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Figure 3. Numerical integration of the triad model equations (§ 3.1). (a) Time record of the
rescaled temperature flux, (b) instantaneous temperature field.

Figure 3(b) shows the typical instantaneous temperature field in the quasi-
equilibrium regime (t0 = 50), which exhibits the characteristically elongated salt fingers,
reminiscent of the moderate Pr simulation of the original system (figure 1). However,
the temperature field in figure 3(b) is qualitatively different from the low Pr simulation
(figure 2), which suggests that the proposed nonlinear model based on the triad
interaction may have a limited range of applicability.

To be more quantitative in analysing the asymptotic results, we performed a
series of simulations with the original system (1) in which the density ratio was
systematically varied. The Prandtl number was kept constant at Pr = 1 and all other
parameters were the same as in figures 1–3. In each case, we recorded the equilibrium
flux FT = 〈wT 〉, averaged in time, and the results (figure 4) were compared with the
theoretical prediction:

FT = ε2FT 0, (13)

where the rescaled equilibrium flux FT 0 is given in (12). The agreement between
the original and asymptotic solutions in figure 4 is apparent both in terms of
typical magnitudes of fluxes and in terms of their dependence on ε. However, when
the analogous comparison was made for Pr =0.01 (not shown), the triad model
prediction substantially overestimated the direct numerical fluxes. These observations
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Figure 4. The time averaged temperature flux from the direct numerical simulations with
Pr = 1, τ = 1/3 (x signs) are plotted as a function of ε = R−1

ρ − τ in logarithmic coordinates
along with the prediction of the asymptotic theory (solid line) based on the triad interaction
mechanism.

imply that the triad interaction model performs adequately for moderate and large
Pr but fails when Pr is low.

It should also be emphasized that Pr does not even appear in the asymptotic
equations (8) and (11), which, at first, may seem to suggest that the Prandtl number
effects are secondary. However, such interpretation would be erroneous. Simulations
offer plenty of evidence to the contrary – the flow patterns in low Pr regime differ
dramatically from those observed for large Pr (see figures 1 and 2). Yet another
reason to doubt the relevance of the triad interaction model for low Pr comes from
taking the horizontal average of (11). The averaging eliminates all terms on the
left-hand side and, making use of the assumed periodic boundary conditions on ψ ,
we arrive at

ψ̄0(z) = 0, (14)

where bar denotes the horizontal average. Thus, the triad model ignores effects of
the mean vertical shear – the most dramatic feature of salt fingering (see figure 2b)
and, most likely, a key player in the equilibrium dynamics at low Pr. In order to gain
insight into the effects of shear, we now turn to the asymptotic model that is focused
specifically on the mean field interaction.

3.2. Mean field theory

Mean field models typically assume a two-stage equilibration process: first, nonlinear
interaction of the growing unstable modes leads to the modification of the horizontally
averaged fields (T̄ , S̄, ψ̄) and then the mean field modes interact with primary
instabilities and suppress their growth. Pursuing this idea, we assume that the principal
consequence of the interaction between the leading order modes (5) is the generation
of x-independent components. Scales of these components are deduced from the
balance between the linear mean field terms in the governing equations (1) and the
leading order nonlinearity:⎧⎪⎪⎨

⎪⎪⎩
T = εqT0 + ε2q+ 1

4 θ(z) + . . . ,

S = εqS0 + ε2q+ 1
4 σ (z) + . . . ,

ψ = εq+ 1
4 ψ0 + ε2q+ 1

2 ϕ(z) + . . . .

(15)
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where (θ, σ, ϕ) are the rescaled mean field variables. Since the first term in the
temperature equation (∂T /∂t ∼ ε3/2εq) is supposed to be of the same order as the
nonlinear advection of the primary instability modes (εqT0) by the mean shear
(ε2q+1/2ϕ), we arrive at

q =
1

4
. (16)

Note that this value is different from q realized in the triad model (6). When series
(15) is further extended, we arrive at⎧⎨

⎩
T = ε1/4T0 + ε3/4θ(z) + ε5/4T2 + . . . ,

S = ε1/4S0 + ε3/4σ (z) + ε5/4S2 + . . . ,

ψ = ε1/2ψ0 + εϕ(z) + ε3/2ψ2 + . . . .

(17)

Next, these series are substituted in governing equations (1) and terms of the same
order in ε are collected. The leading order (∼ε3/4) balance of the advection–diffusion
equations yields the diagnostic relationships:⎧⎨

⎩
T0 = S0,

∂ψ0

∂x0

= ∇2
0T0,

(18)

which are identical to that in the triad model. The first-order (∼ε5/4) balance of the
advection–diffusion equations makes it possible to express the mean T-S components
in terms of the zero-order quantities:⎧⎪⎪⎨

⎪⎪⎩
J0(ψ0, T0) =

∂2θ

∂2
0z0

,

J0(ψ0, T0) = τ
∂2σ

∂2
0z0

,

(19)

whereas at the second order (∼ε7/4) we obtain⎧⎪⎨
⎪⎩

∂T0

∂t0
+ J0(ϕ, T0) + J0(ψ0, θ) +

∂ψ2

∂x0

= ∇2
0T2,

∂S0

∂t0
+ J0(ϕ, S0) + J0(ψ0, σ ) +

∂ψ0

∂x0

+ τ
∂ψ2

∂x0

= τ∇2
0S2.

(20)

The vorticity equation at the leading (∼ε3/2) order reduces to

∂

∂x0

(T2 − S2) + ∇4
0ψ0 = 0, (21)

and the horizontally averaged second-order (∼ε2) balance of the vorticity equation
yields

J0(ψ0, ∇2
0ψ0) = Pr

∂4ϕ

∂z4
0

. (22)

Our final step is to eliminate the second order terms (T2, S2) and form a closed
system of equations for zero-order quantities, which is accomplished as follows. The
salinity equation in (20) is divided by τ , subtracted from the temperature equation,
and then (T2 − S2) in the resulting expression is eliminated using (21):(

1

τ
− 1

)
∂

∂x0

[
∂T0

∂t0
− ∂ϕ

∂z0

∂T0

∂x0

]
+

(
1

τ 2
− 1

)
∂

∂x0

(
∂ψ0

∂x0

∂θ

∂z0

)
+

1

τ

∂2ψ0

∂x2
0

= ∇6
0ψ0. (23)
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Figure 5. Numerical integration of the mean field equations. (a) Typical instantaneous
temperature field for Pr = 0.01, τ = 1/3. (b) The rescaled (time averaged) temperature flux
from a series of simulations (x signs) with various values of Prandtl number, plotted as a
function of Pr in logarithmic coordinates along with the asymptotic (Pr → 0) prediction (solid
line).

The combination of (18), (19), (22) and (23) represents a closed system of equations.
To determine whether it captures gross features of the original system (1) at low
Prandtl number, the asymptotic model was numerically integrated in time. Figure 5(a)
present a typical instantaneous temperature field for Pr =0.01 (for consistency, all
other parameters were kept the same as in all preceding runs). The temperature
patterns simulated by the mean field model have many characteristics in common with
the original low-Pr-number calculations (figure 2). In both models, salt fingers appear
in the form of disorganized, roughly isotropic blobs, distorted by the background shear
flow. However, for large Pr the mean field model solutions (not shown), bear little
resemblance to the patterns observed in the corresponding simulations of the original
system (figure 1).

Thus, intriguing questions arise: Why is the mean field model more relevant at
low Pr but the triad model more appropriate for moderate and large Pr? What
determines the point of transition between these two distinct dynamical regimes? Is
it possible to incorporate both effects in terms of a unified asymptotic model? To
answer the first question, we examine the equilibrium amplitudes predicted by the
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mean field and triad models. The two models are characterized by different ε-scales
of primary variables, as given in (7) and (17). For instance, the magnitudes of the
temperature flux FT = 〈wT 〉 – a principal measure of the salt finger intensity – are
represented by the following leading order scales:{

FT triad = ε2FT 0triad ,

FT mean−field = εFT 0mean−field .
(24)

These dependencies suggest that if ε is small and FT 0triad and FT 0mean−field are order
one quantities, then |FT triad | 
 |FT mean−field |. This, in turn, implies that the equilibration
should occur through the triad mechanism: As weak initially linear unstable fingers
gradually increase their amplitude, they first reach the magnitude required for the
triad equilibration and stop growing, whereas engaging the mean field mechanisms
would require further increase in amplitude.

The foregoing argument, however, should be modified for small Pr. Recall that
the zero-order quantities in the triad model are independent of Pr, which is not
the case for the mean field model. The dependence of the mean field model flux
on Pr is shown in figure 5(b), which illustrates a strong, nearly linear, relationship
between FT 0mean−field and Pr. This dependence can be rationalized (see Appendix B)
by considering the limit Pr → 0, which at the leading order yields:

FT 0mean−field = PrFT 00 forPr → 0, (25)

where FT 00 is independent of Pr. Thus, the equilibrium amplitude for the triad
interaction model can actually exceed the mean field equilibrium level if:

|FT triad | ∼ ε2 > εPr ∼ |FT mean−field | → Pr < ε, (26)

resulting in a different equilibrium dynamics – dynamics controlled by the mean
horizontal shear. This conjecture rationalizes features observed in the direct numerical
simulations and specifies the regions in the parameter space controlled by the triad
and mean field effects.

Of course, it is desirable to formulate a unified model that includes both effects in
a single framework. For that, we note that the equilibrium values in (24) formally
appear at the same order in our expansion as long as Pr ∼ ε. Thus, a consistent
asymptotic model can be developed by rescaling the Prandtl number as follows:

Pr = εPr0, (27)

and the asymptotic solutions in this sector of the parameter space will be presented
next.

4. Combined effects of the triad interaction and the mean field
Aside from a different scaling of the Prandtl number, the following theory is

analogous to the weakly nonlinear models in § 3 and therefore it is presented in
abbreviated form.

4.1. The hybrid weakly nonlinear theory

The governing equations for the parameter sector (27) consist of the original
advection–diffusion equations and the vorticity equation in a slightly modified form:

∂

∂t
∇2ψ + J (ψ, ∇2ψ) = Pr0ε

[
∂

∂x
(T − S) + ∇4ψ

]
. (28)
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The independent variables are still rescaled using (4) and the balanced weakly
nonlinear solution of this system can be found in terms of an asymptotic expansion
(7). The zero-order (∼ε5/4) and the first-order (∼ε9/4) balances of T-S equations are
identical to those realized in the triad interaction model (see (8) and (9)). However the
leading order (∼ε3) balance of the vorticity equation (28) is substantially different:

∂

∂t0
∇2

0ψ0 + J0

(
ψ0, ∇2

0ψ0

)
= Pr0

[
∂

∂x0

(T1 − S1) + ∇4ψ0

]
. (29)

Combining (8), (9) and (29) to eliminate all first-order terms (T1, S1, ψ1), we arrive
at

1

Pr0

∇2
0

[
∂

∂t0
∇2

0ψ0 + J0

(
ψ0, ∇2

0ψ0

)]
+

(
1

τ
− 1

)
∂

∂x0

[
∂T0

∂t0
+ J0(ψ0, T0)

]
+

1

τ

∂2ψ0

∂x2
0

= ∇6
0ψ0.

(30)

For convenience, we express the prognostic components in (30) entirely in terms of
temperature. For that, we differentiate (30) in x0 and use the second equation in (8),
namely

∂ψ0

∂x0

= ∇2
0T0. (31)

It should be emphasized that (31) does not provide a unique solution for ψ0 in terms
of T0 – what is missing is a prescription for the horizontal average of streamfunction
ψ0. (This difficulty did not arise in the triad model because of condition (14).) The
equation for ψ0 is obtained by averaging (29) horizontally. Our final result is a closed
system of equations for the zero-order variables:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t0

[(
1

τ
− 1

)
∂2T0

∂x2
0

+
1

Pr0

∇6
0T0

]
+

1

Pr0

∂

∂x0

∇2
0J0

(
ψ0, ∇2

0ψ0

)
+

(
1

τ
− 1

)
∂2

∂x2
0

J0(ψ0, T0) +
1

τ

∂2

∂x2
0

∇2
0T0 = ∇8

0T0,

∂ψ0

∂x0

= ∇2
0T0,

∂

∂t0

∂2ψ̄0

∂z2
0

+ J0(ψ0, ∇2
0ψ0) = Pr0

∂4ψ̄0

∂z4
0

.

(32)

To determine whether this asymptotic limit captures the key properties of the
original system (1), the hybrid model was integrated in time. Of particular interest is
to observe the transition from the triad equilibration at large Pr to the mean flow
dynamics at low Pr. Therefore in the following experiments we varied Pr0, while other
parameters matched earlier simulations. Figure 6(a) presents the typical equilibrium
streamfunction pattern for Pr0 = 30. As in large Prandtl number solutions of the
original system (figure 1), salt fingers appear in the form of disorganized small-scale
filaments, exhibiting no visible signs of the mean shear flow. This homogeneous
pattern changes dramatically when Pr0 is reduced to 0.3 in figure 6(b). The flow
field reorganizes into horizontally uniform bands representing the sheared horizontal
current, bearing the striking similarity with the corresponding low Prandtl number
regime of the original system (figure 2).

Note that the hybrid model (32) was formally derived only for the sector (27) in the
(ε, Pr) parameter space where Pr0 = O(1) and therefore its applicability for a wider
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Figure 6. The streamfunction field in the hybrid model for (a) Pr0 = 30 and (b) Pr0 = 0.3.

range of Prandtl numbers is yet to be determined. The hybrid model will be validated
next by comparing its predictions with the direct numerical simulations of primitive
equations (1). However, it should be mentioned that in the limit Pr0 → ∞ the hybrid
model (32) immediately reduces to the triad interaction model. Thus, we expect (32)
to be appropriate even for large Prandtl numbers. However for super low values of
Prandtl number (Pr0 
 1), we anticipate appearance of new effects, not included in
the asymptotic formulations, namely the broadband spectrum of modes caused by the
separation of the forcing and dissipative scales (see the discussion in Appendix A).

4.2. Comparison with the direct numerical simulations

To systematically discuss utility and limitations of various theoretical models, we now
draw together all our asymptotic results and compare them with the corresponding
simulations of the original fully nonlinear system (1). Since the asymptotic
formulations are based on the expansion in which ε is small, we performed a series
of direct numerical simulations with Rρ = 2.95 (ε = 0.0056) and Rρ = 2.9(ε = 0.0115)
and the Prandtl number was systematically varied within the range

0.01 < Pr < 10. (33)
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Figure 7. Comparison of the asymptotic solutions with the direct numerical simulations over
a range of Pr for (a) Rρ = 2.95 and (b) Rρ = 2.9. The dashed curves represent the time averaged
temperature flux simulated using the original system (1). The corresponding asymptotic fluxes,
predicted by the triad, mean field and hybrid models, are indicated by the straight horizontal
lines, x signs and heavy curves, respectively.

All other parameters remained the same as in previous simulations (e.g. figures 1
and 2).

The following comparison of models is based on their ability to represent the
vertical temperature flux. The fluxes predicted by the triad and mean field models are
given by (24), where the rescaled triad flux (FT 0triad ) is in (12) and the rescaled mean
field flux (FT 0mean−field ) was computed for Prandtl numbers in the range (33) using
(B 1). Prediction of the temperature flux by the hybrid model also required a series
of simulations – this time using (32) – in which Pr0 = Pr/ε was systematically varied
in the range corresponding to (33).

All models, numerical and asymptotic, are compared in figure 7(a) for Rρ = 2.95
and in figure 7(b) for Rρ =2.9. In each case, the best performance is achieved by
the hybrid model (heavy solid curves) which follows closely the pattern of the fully
nonlinear simulation (dashed curves) over the entire range of Pr in (33) – the range
that spans three orders of magnitude. The numerical simulations and the hybrid
model are both characterized by a complicated non-monotonic dependence of the
temperature flux on Prandtl number. This agreement indicates that the hybrid model
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accurately describes the nonlinear equilibration of salt fingers. Of particular interest
is the ability of the hybrid model to capture the transition between two dynamically
distinct regimes controlled by the triad and mean field mechanisms. The pure triad
model (straight thin lines in figure 7) offers a decent estimate of temperature flux for
large values of Pr but fails to capture the variation in fluxes with Prantdl number.
The mean field model is least satisfying – it significantly underestimates fluxes for low
Pr but overestimates them for large Pr. This suggests that the mean field mechanisms,
while undoubtedly essential at low Pr, should always be considered in conjunction
with the triad interaction effects.

5. Discussion
This paper presents numerical and theoretical models for the equilibration of

weakly nonlinear salt fingers. Two dominant mechanisms of equilibration are the
triad interactions between various growing modes and the adverse action of vertical
shear, spontaneously developing as a result of secondary salt finger instabilities. Both
processes are essential: Triad interactions control the equilibration at moderate and
high values of Prandtl number (Pr), whereas the mean field effects become critical
at low Pr. The flow characteristics revealed by the direct numerical simulations are
explained using an asymptotic expansion in which ε =R−1

ρ − τ is small. To gain
insight into the mechanics of nonlinear equilibration, we first consider analytical
models which isolate the mean field and triad mechanisms (§ 3). It is shown that,
individually, these models cannot accurately describe the equilibrium patterns of salt
fingers in all regions of the parameter space. For instance, the triad model captures
the essence of the dynamics at play in the sector Pr � ε of governing parameters,
which makes it relevant for oceanographic applications (Pr ∼ 10), but leaves open the
possibility of different dynamics in astrophysical systems (Pr 
 1).

To explain the interaction and combined effects of the mean field and triad
mechanisms, we propose a hybrid model (§ 4) which represents both stabilizing
processes in a single framework. While this model was originally developed by
focusing on a sector in the parameter space for which Pr ∼ ε, the resulting solutions
agree with the fully nonlinear numerical simulations over a wide range of Pr. Since
the hybrid model is about as simple as the triad or mean field models and yet provides
a consistent description of both stabilizing mechanisms, it seems sensible to use it
under all circumstances as a canonical form for the weakly nonlinear salt fingering.
We also note that while specific solutions in this paper are two-dimensional, it is
straightforward to extend our asymptotic formulations to three dimensions. The three-
dimensional counterparts of the triad, mean field, and hybrid models are presented in
Appendix C. It remains to be determined how well these theoretical predictions are
realized in three-dimensional direct numerical simulations.

Finally, it should be emphasized that although the weakly nonlinear models in this
paper lead to a set of partial differential equations that require further treatment,
numerical or analytical, they advance our understanding of double-diffusion in several
critical aspects. The central goal of the double-diffusive theory is the prediction of
the flow patterns and the vertical transport as a function of three non-dimensional
parameters − τ , Pr and Rρ . The proposed models describe dependence of the
system on ε = R−1

ρ − τ analytically, thereby reducing the parameter space to just two
independent parameters (Pr0, τ ) in case of the hybrid model, or to one (τ ) for the
triad model. In addition, these nonlinear models offer a transparent interpretation of
the processes at play. Complexities of the original (Bousinesq) governing equations
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preclude the direct association of individual terms with distinct mechanisms. In
contrast, each term in the asymptotic models represents an easily identifiable physics,
making it possible to trace the chain of events leading to the nonlinear equilibration
of salt fingers. The price paid for tractability is, of course, the limited accuracy outside
of the weakly unstable range. In our opinion, it is a fair price.

The author thanks Neil Balmforth, Melvin Stern, George Veronis and reviewers for
helpful comments. Support of the National Science Foundation (grants OCE 0547650,
AST 0806431 and CBET 0933057) is gratefully acknowledged.

Appendix A. Linear stability analysis in the limit ε → 0

Trivial modifications aside, the linear stability analysis yields the same results
in three dimensions as it does in two. For simplicity, we use a two-dimensional
formulation, in which case the linearization of governing equations (1) yields:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂T

∂t
+

∂ψ

∂x
= ∇2T ,

∂S

∂t
+ (ε + τ )

∂ψ

∂x
= τ∇2S,

∂

∂t
∇2ψ = Pr

[
∂

∂x
(T − S) + ∇4ψ

]
,

(A 1)

where ε = 1/Rρ − τ . We now examine the stability characteristics of this system in the

limit ε → 0. Substitution of the normal modes (ψ, T , S) = (ψ̂, T̂ , Ŝ) · exp[i(kx +mz)+
λt] in (A1) yields the growth rate equation

λ3 + Aλ2 + Bλ + C = 0, (A 2)

where ⎧⎪⎪⎨
⎪⎪⎩

A = (k2 + m2)(1 + τ + Pr),

B =
Prk2(1 − τ − ε)

k2 + m2
+ (τ + τPr + Pr)(k2 + m2)2,

C = Pr[τ (k2 + m2)3 − εk2].

(A 3)

The cubic equation (A 2) has three roots. Two of the solutions are complex and
represent oscillatory modes – gravity waves damped by the molecular dissipation. The
third root is real. It represents the direct salt finger instability and therefore, we shall
focus on this solution by insisting that the imaginary part of the growth rate is zero:
Im(λ) = 0. Of particular concern is the maximum growth rate, which is computed by
requiring

∂

∂k
λ(k, m)

∣∣∣∣
k=kmax
m=mmax

=
∂

∂m
λ(k, m)

∣∣∣∣
k=kmax
m=mmax

= 0. (A 4)

Differentiating (A 2) in m, we discover that ∂/∂m λ(k, m) = 0 for m = 0, regardless
of k. This implies that vertical salt fingers achieve the maximum growth rate and
therefore our subsequent analysis is focused on this simple case (m= 0), which reduces
the growth rate equation (A 2) to

λ3+ k2(1+τ +Pr)λ2+(τPrk4+ τk4+ Prk4 + Pr − εPr − τPr)λ + Prk2(τk4 − ε) = 0.

(A 5)
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To determine the horizontal wavenumber of the fastest growing mode (kmax ), we
differentiate (A 5) in k and require the derivative of the growth rate to vanish at
k = kmax :

λ2(1 + τ + Pr) + 2λk2
max (τ + Pr + τPr) + Pr

(
3τk4

max − ε
)

= 0. (A 6)

The fastest growth rate is given by the larger root of the quadratic equation (A6),
and its substitution in (A5) yields the equation for kmax :

ak12
max + bk8

max + ck4
max + d = 0, (A 7)

where a, b, c, and d are polynomials (not shown) in τ , Pr , and ε.
Next, we analyse the asymptotic (ε 
 1) properties of (A 7). Explicit solutions for

kmax are obtained by expanding in powers of ε as follows:

k4
max = εK1 + ε2K2 + . . . . (A 8)

The diffusivity ratio τ in this expansion is regarded as order one quantity.
For Prandtl number, it is instructive to consider two limits: (a) Pr = O(1)and (b)
Pr = εPr0, where Pr0 = O(1).

A.1. Finite Prandtl number

In this case, substituting series (A 8) in (A 7) and collecting the first-order terms yields

K1 =
1

3τ
. (A 9)

Thus, at the leading order in ε,

kmax ≈ ε1/4

(3τ )1/4
, (A 10)

and the corresponding growth rate is evaluated from (A 6):

λmax ≈ 2

9(1 − τ )

√
3

τ
ε3/2. (A 11)

These asymptotic dependencies rationalize the choice of the ε-scales for independent
variables (4) used in the weakly nonlinear theory.

A.2. Low-Prandtl-number limit

The asymptotic limit considered in the hybrid model (§ 5) involves rescaling the Prandtl
number as Pr = εPr0. In this case, substitution of (A 8) in (A 7) and collecting the
leading order terms in the resulting expression yields:

K1 =
1

2τ

(
3τPr0 − 3Pr0 − 1 +

√
9τ 2Pr2

0 − 18τPr2
0 − 10τPr0 + 9Pr2

0 + 10Pr0 + 1
)
,

(A 12)

which implies the same asymptotic scalings as in case (a), namely kmax ∝ ε1/4 and
λmax ∝ ε3/2. Note also that in the limit of large Pr0, (A 12) converges to (A 9).

It is of interest to also examine the limit of small Pr0. In this case,

K1 =
1 − τ

τ
Pr0 + O

(
Pr2

0

)
forPr0 → 0, (A 13)

and the corresponding wavenumber and growth rate reduce to

kmax ≈
(

1 − τ

τ
Pr0

)1/4

ε1/4, λmax ≈ 1

2

√
Pr0

τ (1 − τ )
(1 − 3Pr0 + 3τPr0) ε3/2. (A 14)
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Thus, kmax monotonically decreases with Pr0 to zero. This property is in contrast
with the dependencies of the mode with zero growth rate (k0), whose wavenumber
does not depend on Pr. The latter can be computed from (A 5):

k0 =
ε1/4

τ 1/4
. (A 15)

The difference in dependencies of kmax and k0 on Pr has potentially significant
implications for the nonlinear asymptotic theory in § 4. In essence, kmax represents
the wavelength where the energy and T-S variances enter inter the system – the scale
of primary salt finger instability. The dissipation range, where molecular processes
suppress the growth, starts at k0. Thus, for Pr0 
 1, the forcing scales are separated
from the dissipation scales: kmax/k0 ∝ Pr1/4

0 
 1. Note that this peculiarity does not
arise for moderate and large Pr0, where necessarily kmax/k0 = O(1).

Hence, we speculate that the process of salt finger equilibration in the limit Pr0 → 0
involves a cascade of tracer variance to smaller and smaller scales, as occurs in
more conventional and fully nonlinear turbulence problems. Consequently, one might
anticipate substantial differences between the two-dimensional and three-dimensional
solutions. Finally, we add that in the case of super low Prandtl number (Pr0 → 0),
our weakly nonlinear expansion, in its original form, becomes suspect since it assumes
a narrow range of spatial scales given by (4). Because of all these hurdles, we do not
dare to venture further into the Pr0 
 1 regime and limit our asymptotic analysis to
moderate and large values of Pr0.

Appendix B. Weakly nonlinear mean field model in the limit
of low Prandtl number

Governing equations for the mean field model discussed in § 3.2 are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

τ
− 1

)
∂

∂x0

[
∂T0

∂t0
− ∂ϕ

∂z0

∂T0

∂x0

]
+

(
1

τ 2
− 1

)
∂

∂x0

(
∂ψ0

∂x0

∂θ

∂z0

)
+

1

τ

∂2ψ0

∂x2
0

= ∇6
0ψ0,

J0(ψ0, ∇2
0ψ0) = Pr

∂4ϕ

∂z4
0

,

∂ψ0

∂x0

= ∇2
0T0,

J0(ψ0, T0) =
∂2θ

∂2
0z0

= τ
∂2σ

∂2
0z0

,

(B 1)

and we are concerned by its behaviour in the limit Pr → 0. If the dominant stabilizing
effect in this system is associated with the distortion of salt fingers by the mean shear,
then the term (∂ϕ/∂z0)(∂T0/∂x0) should be of the same order as ∂T0/∂t0, which
requires ϕ to be an order one quantity regardless of Pr. The second equation in (B 1)
then demands ψ0 ∼ Pr1/2; third equation implies that T0 ∼ Pr1/2, and fourth – that
(θ, σ ) ∼ Pr . Therefore, we rescale variables as follows:⎧⎪⎪⎨

⎪⎪⎩
ψ0 = Pr1/2ψ00,

T0 = Pr1/2T00,

ϕ = ϕ00,

(θ, σ ) = Pr(θ00, σ00),

(B 2)

where the subscript ‘00’ is used to denote the order one quantities for the limit Pr → 0.
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Substituting (B 2) in (B 1) and taking the limit Pr → 0, we arrive at a new closed
system: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
1

τ
− 1

)
∂

∂x0

[
∂T00

∂t0
− ∂ϕ00

∂z0

∂T00

∂x0

]
+

1

τ

∂2ψ00

∂x2
0

= ∇6
0ψ00,

J0

(
ψ00, ∇2

0ψ00

)
=

∂4ϕ00

∂z4
0

,

∂ψ00

∂x0

= ∇2
0T00.

(B 3)

To determine whether this model is consistent with finite Pr system, (B 3) was
numerically integrated in time. For consistency with all other simulations in this
paper, the size of the computational domain corresponded to 16 × 16 fastest growing
finger wavelengths, resolved by (128 × 128) elements, the diffusivity ratio was τ = 1/3,
and the model was initialized from rest by a random computer-generated initial
T00 distribution. After a few characteristic growth periods, active statistically steady
double-diffusive convection was established, which exhibits (not shown) all signatures
of the finite Pr mean field model – salt fingers appear in the form of disorganized
tilted eddies advected by the background shear flow.

To be more quantitative in comparing the asymptotic (B 3) and finite Pr (B 1)
simulations, we examine the rescaled temperature flux FT 00 = 〈w00T00〉. The time
mean value of the equilibrium flux is

FT 00 ≈ −0.7217. (B 4)

The asymptotic (Pr → 0) prediction for fluxes FT 0mean−field = PrFT 00 is indicated
by solid line in figure 5(b), along with the corresponding fluxes from the finite Pr
simulations (marked by x signs). The apparent agreement between these calculations
supports the foregoing theory and its prescription (25) for the temperature flux in the
mean field model.

Appendix C. Three-dimensional formulations
This paper is focused on two-dimensional dynamics – an approach motivated

by considerations of computational convenience. In two dimensions, it is possible to
efficiently explore the model dependencies over a wide range of governing parameters,
whereas three-dimensional simulations of double-diffusion still represent a formidable
challenge and are usually performed only for an isolated set, very rarely a few sets,
of governing parameters. However, all our theoretical developments can be readily
extended to three dimensions. In expectation of utilizing them in future explorations of
salt fingering, three-dimensional asymptotics are presented below. Since the derivation
of these models closely follows their two-dimensional counterparts, we omit details
and present the final results.

The governing – non-dimensional Bousinesq – equations are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
+ w = ∇2T ,

dS

dt
+

w

Rρ

= τ∇2S,

∇ · v = 0,

dv

dt
= Pr

[
−∇p +

∂

∂x
(T − S)k + ∇2v

]
,

(C 1)
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where v = (u, v, w) is the velocity vector, p = pdimd2/ρ0νkT is the non-dimensional
pressure, and d/dt = ∂/∂t + v · ∇ is the material derivative. The space/time scales
of independent variables in the limit ε = R−1

ρ − τ → 0 are analogous to those in
two-dimensions (4):

(x, y, z) = ε−1/4(x0, y0, z0), t = ε−3/2t0. (C 2)

C.1. Triad interaction model

The primary variables are expanded in ε as follows⎧⎪⎨
⎪⎩

(T , S) = ε3/4(T0, S0) + ε7/4(T1, S1) + . . . ,

(u, v, w) = ε5/4(u0, v0, w0) + ε9/4(u1, v1, w1) + . . . ,

p = ε3/2p0 + ε5/2p1 + . . . ,

(C 3)

and the closed set of asymptotic equations for zero-order variables is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

τ
− 1

)[
∂T0

∂t0
+ ∇0 · (v0T0)

]
+

w0

τ
= − ∂

∂z0

∇2
0p0 + ∇4

0w0,

w0 = ∇2
0T0,

∇2
hp0 = − ∂

∂z0

∇4
0T0,

∂3

∂z3
0

p̄0 =

(
1 − 1

τ

)
∂

∂z0

w0T0,

∇2
0(u0, v0) =

(
∂p0

∂x0

,
∂p0

∂y0

)
,

(C 4)

where ∇2
h ≡ (∂2/∂x2

0 ) + (∂2/∂y2
0 ).

C.2. Mean field model

The primary variables are expanded in ε as follows:⎧⎪⎨
⎪⎩

(T , S) = ε1/4(T0, S0) + ε3/4(θ(z), σ (z)) + ε5/4(T2, S2) + . . . ,

(u, v, w) = ε3/4(u0, v0, w0) + ε5/4(u1(z), v1(z), 0) + ε7/4(u2, v2, w2) + . . . ,

p = εp0 + ε3/2p1 + ε2p2 + . . . ,

(C 5)

and the closed set of asymptotic equations for zero-order variables is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

τ
− 1

)[
∂T0

∂t0
+ u1

∂T0

∂x0

+ v1

∂T0

∂y0

]
+

(
1

τ 2
− 1

)
w0

∂θ

∂z0

+
w0

τ
= − ∂

∂z0

∇2
0p0 +∇4

0w0,

w0 = ∇2
0T0,

∇2
hp0 = − ∂

∂z0

∇4
0T0, p̄0 = 0,

∇2
0(u0, v0) =

(
∂p0

∂x0

,
∂p0

∂x0

)
,

∇2
0(u1, v1) =

1

Pr
(w0u0, w0v0).

(C 6)
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C.3. Hybrid model

The primary variables are expanded in ε as in (C 3) and the closed set of asymptotic
equations for zero-order variables is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

τ
− 1

)[
∂T0

∂t0
+ ∇0 · (v0T0)

]
+

1

Pr0

∇2
0

[
∂∇2

0T0

∂t0
+ ∇0 ·

(
v0∇2

0T
)]

+
w0

τ
,

= − ∂

∂z0

∇2
0p0 + ∇4

0w0, w0 = ∇2
0T0,

∇2
hp0 = − ∂

∂z0

∇4
0T0,

∂3

∂z3
0

p̄0 =

(
1 − 1

τ

)
∂

∂z0

w0T0 +
1

Pr0

∂3

∂z3
0

w0∇2
0T ,

∇2
0(u0, v0) =

(
∂p0

∂x0

,
∂p0

∂x0

)
.

(C 7)
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